New Oscillation Results From MiniBooNE Žarko Pavlović Los Alamos National Laboratory #### Outline - Introduction - MiniBooNE exp. - Data analysis - Results - Future outlook - Conclusion A. A. Aguilar-Arevalo¹², C. E. Anderson¹⁵, S. J. Brice⁶, B. C. Brown⁶, L. Bugel¹¹, J. M. Conrad¹¹, Z. Djurcic², B. T. Fleming¹⁵, R. Ford⁶, F. G. Garcia⁶, G. T. Garvey⁹, J. Mirabal⁹, J. Grange⁷, J. A. Green^{8,9}, R. Imlay¹⁰, R. A. Johnson³, G. Karagiorgi¹¹, T. Katori^{8,11}, T. Kobilarcik⁶, S. K. Linden¹⁵, W. C. Louis⁹, K. B. M. Mahn⁵, W. Marsh⁶, C. Mauger⁹, W. Metcalf¹⁰, G. B. Mills⁹, C. D. Moore⁶, J. Mousseau⁷, R. H. Nelson⁴, V. Nguyen¹¹, P. Nienaber¹⁴, J. A. Nowak¹⁰, B. Osmanov⁷, Z. Pavlovic⁹, D. Perevalov¹, C. C. Polly⁶, H. Ray⁷, B. P. Roe¹³, A. D. Russell⁶, M. H. Shaevitz⁵, M. Sorel^{5*}, J. Spitz¹⁵, I. Stancu¹, R. J. Stefanski⁶, R. Tayloe⁸, M. Tzanov⁴, R. G. Van de Water⁹, M. O. Wascko^{10†}, D. H. White⁹, M. J. Wilking⁴, G. P. Zeller⁶, E. D. Zimmerman⁴ (The MiniBooNE Collaboration) ### MiniBooNE motivation - LSND experiment - Stopped pion beam $$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$ $$\rightarrow e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$ - Excess of $\overline{\nu}_{_{e}}$ in $\overline{\nu}_{_{\mu}}$ beam - \overline{v}_e signature: Cherenkov light from e^+ with delayed n-capture ### LSND signal Assuming two neutrino oscillations $$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{1.27 L \Delta m^{2}}{E}\right)$$ = 0.245 ± 0.067 ± 0.045 % Can't reconcile LSND result with atmospheric and solar neutrino using only 3 Standard Model neutrinos – only two independent mass splitings #### Sterile neutrinos - Can have only 3 light active neutrinos - 3 active neutrinos + 1 sterile neutrino $$P(\nu_{\mu} \rightarrow \nu_{e}) = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}\sin^{2}(1.27 \Delta m_{41}^{2}L/E)$$ $$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \sin^{2} (1.27 \Delta m^{2} L/E)$$ Model predicts same oscillation probability for neutrinos and antineutrinos ### MiniBooNE experiment - Similar L/E as LSND - MiniBooNE ~500m/~500MeV - LSND ~30m/~30MeV - Horn focused neutrino beam (p+Be) - Horn polarity → neutrino or anti-neutrino mode - 800t mineral oil Cherenkov detector ### Neutrino flux Neutrino mode $$\begin{array}{lll} v_{\mu} & 93.6\% \\ \overline{v}_{\mu} & 5.8\% \\ v_{e} + \overline{v}_{e} & 0.6\% \\ \end{array}$$ • Anti-neutrino mode $$\begin{array}{ccc} v_{\mu} & 15.7\% \\ \overline{v}_{\mu} & 83.7\% \\ v_{e} + \overline{v}_{e} & 0.6\% \\ \end{array}$$ Phys. Rev. D79, 072002 (2009) ### MiniBooNE neutrino result 6.5e20 POT No excess of events in signal region (E>475 MeV) Ruled out 2 v oscillation as LSND explanation (assuming no CP or CPT violation) ### MiniBooNE neutrino result Excess of events observed at low energy: $128.8 \pm 20.4 \pm 38.3 (3.0\sigma)$ Shape not consistent with 2 v oscillations Magnitude consistent with LSND Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281 CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301. Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017 Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009 CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303 New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363 #### More sterile neutrinos - Next minimal extension 3+2 models - Favored by fits to appearance data (hep-ph/0705.0107) - Model allows CP violation • $$V_{\mu} \rightarrow V_{e} \neq \overline{V}_{\mu} \rightarrow \overline{V}_{e}$$ #### Anti-neutrino results • LSND - signal Karmen – no signal MiniBooNE analysis of 3.4e20 POT (Phys. Rev. Lett. 103, 111801 (2009)) Inconclusive result ### POT collection Protons on target in anti-neutrino mode ### Data stability Very stable throughout the run #### 25m Absorber - Two periods of running with 1 & 2 absorber plates - 1 absorber plate 0.569E20 POT - 2 absorber plates 0.612E20 POT - Good data/MC agreement in high statistics samples ($v_{_{II}}$ CCQE, NC π^{0} , ...) - Data included in this analysis #### Calibration Sources #### Detector calibration - Very stable - For example: Michel electron mean energy within 1% since beginning of run (2002) #### **Events in MB** - Identify events using timing and hit topology - Use primarily Cherenkov light ### Particle ID - Same as the one used for v_e appearance results and also for the first \overline{v}_e appearance result - ID based on ratio of fit likelihoods under different particle hypothesis - Similar backgrounds in neutrino and anti-neutrino run | 5.66e20 Protons on Target | | | | |------------------------------|---------|----------|----------------------------| | | 200-475 | 475-1250 | | | μ^{\pm} | 13.45 | 31.39 | _ | | K [±] | 8.15 | 18.61 | ntrin | | K ⁰ | 5.13 | 21.2 | ntrinsic $v_{_{\epsilon}}$ | | Other $\nu_{_{e}}$ | 1.26 | 2.05 | o < | | | | | | | NC π^0 | 41.58 | 12.57 | | | $\Delta \rightarrow N\gamma$ | 12.39 | 3.37 | < | | dirt | 6.16 | 2.63 | Mis-ID | | $\nu_{_{\mu}}$ CCQE | 4.3 | 2.04 | O | | Other $\nu_{_{\mu}}$ | 7.03 | 4.22 | | | | | | | | Total | 99.45 | 98.08 | | Intrinsic nue - External measurements - HARP p+Be for π^{\pm} - Sanford-Wang fits to world K⁺/K⁰ data *Phys. Rev. D79, 072002 (2009)* - MiniBooNE data 20 constrained Phys. Rev. D81, 013005 (2010) Radiative delta - Use NC π^0 measurement to constrain ## $v_{\rm e}$ Background Uncertainties | Uncertainty (%) | 200-475MeV | 475-1100MeV | |-------------------------------|------------|-------------| | π^+ | 0.4 | 0.9 | | $\pi^{\scriptscriptstyle{-}}$ | 3 | 2.3 | | K ⁺ | 2.2 | 4.7 | | K ⁻ | 0.5 | 1.2 | | K ^o | 1.7 | 5.4 | | Target and beam models | 1.7 | 3 | | Cross sections | 6.5 | 13 | | NC pi0 yield | 1.5 | 1.3 | | Hadronic interactions | 0.4 | 0.2 | | Dirt | 1.6 | 0.7 | | Electronics & DAQ model | 7 | 2 | | Optical Model | 8 | 3.7 | | | | | | Total | 13.4% | 16.0% | - Unconstrained v_e background uncertainties - Propagate input uncertainties from either MiniBooNE measurement or external data ### v_e Background Uncertainties | Uncertainty (%) | 200-475MeV | 475-1100MeV | |-------------------------------|------------|-------------| | π^{+} | 0.4 | 0.9 | | $\pi^{\scriptscriptstyle{-}}$ | 3 | 2.3 | | K ⁺ | 2.2 | 4.7 | | K ⁻ | 0.5 | 1.2 | | K ^o | 1.7 | 5.4 | | Target and beam models | 1.7 | 3 | | Cross sections | 6.5 | 13 | | NC pi0 yield | 1.5 | 1.3 | | Hadronic interactions | 0.4 | 0.2 | | Dirt | 1.6 | 0.7 | | Electronics & DAQ model | 7 | 2 | | Optical Model | 8 | 3.7 | | | | | | Total | 13.4% | 16.0% | Uncertainty determined by varying underlying cross section model parameters (M_A, Pauli blocking, ...) Many of these parameters measured in MiniBooNE # $\nu_{\rm e}$ Background Uncertainties | Uncertainty (%) | 200-475MeV | 475-1100MeV | |-------------------------------|------------|-------------| | π^{+} | 0.4 | 0.9 | | $\pi^{\scriptscriptstyle{-}}$ | 3 | 2.3 | | K ⁺ | 2.2 | 4.7 | | K ⁻ | 0.5 | 1.2 | | K ^o | 1.7 | 5.4 | | Target and beam models | 1.7 | 3 | | Cross sections | 6.5 | 13 | | NC pi0 yield | 1.5 | 1.3 | | Hadronic interactions | 0.4 | 0.2 | | Dirt | 1.6 | 0.7 | | Electronics & DAQ model | 7 | 2 | | Optical Model | 8 | 3.7 | | | | | | Total | 13.4% | 16.0% | Uncertainty in light creation, propagation and detection in the detector ### Signal prediction - Assuming only right sign oscillates ($\overline{\nu}_{\mu}$) - Need to know wrong sign vs right sign - $\overline{\nu}_{\!_{\mu}}$ CCQE gives more forward peaked muon #### Oscillation Fit Method Maximum likelihood fit: $$-2\ln(L) = (x_1 - \mu_1, ...x_n - \mu_n)M^{-1}(x_1 - \mu_1, ...x_n - \mu_n)^T + \ln(|M|)$$ - Simultaneously fit - v_e CCQE sample - High statistics v_u CCQE sample - $v_{_{\!{\scriptscriptstyle L}}}$ CCQE sample constrains many of the uncertainties: - Flux uncertainties Cross section uncertainties ### Sensitivity - MiniBooNE uses E>475MeV for oscillation fits - Energy region where expect LSND type signal - E<475: - Large backgrounds - Big systematics - Not sensitive to LSND oscillation signal ### Results ### First nuebar appearance result - W&C December 2008 - Using 3.4e20 POT ### New Anti-neutrino data - 5.66e20 POT - ~70% more data #### New Anti neutrino data | | 200-475MeV | 475-1250MeV | |---------------------------------|------------|-------------| | Data | 119 | 120 | | MC | 100.5±14.3 | 99.1±14.0 | | Excess | 18.5±14.3 | 20.9±14.0 | | LSND Best Fit | 7.6 | 22 | | Expectation from v low E excess | 11.6 | 0 | | LSND+Low E | 19.2 | 22 | - Excess of events in both 200-475MeV and 475-1250MeV region - Assuming only neutrinos produce low energy excess expect 11.6 events in 200-475MeV region #### New Anti neutrino data | | 200-475MeV | 475-1250MeV | |---------------------------------|------------|-------------| | Data | 119 | 120 | | MC | 100.5±14.3 | 99.1±14.0 | | Excess | 18.5±14.3 | 20.9±14.0 | | LSND Best Fit | 7.6 | 22 | | Expectation from v low E excess | 11.6 | 0 | | LSND+Low E | 19.2 | 22 | - Excess of events in both 200-475MeV and 475-1250MeV region - If low E excess is due to Standard Model NC gamma-ray mechanism, eg Axial Anomaly, expect ~67 excess events in 200-475MeV (scaling excess by the ratio of total flux in v and \overline{v} mode) #### Other kinematic distributions - 5.66e20 - \overline{v}_e sample # Null probability - Absolute χ^2 probability of null point (background only) model independent - Frequentist approach | | chi2/NDF | probability | |------------|-----------|-------------| | E>475MeV | 26.8/14.9 | 3.0% | | * E>200MeV | 33.2/18.0 | 1.6% | ^{*} No assumption about low E excess made # Drawing contours - Frequentist approach - Fake data experiments on grid of $(\sin^2 2\theta, \Delta m^2)$ points - At each point find the cut on likelihood ratio for X% confidence level such that X% of experiments below cut - Fitting two parameters, so naively expect χ^2 distribution with 2 degrees of freedom, in reality at null it looks more like 1 degree of freedom #### Fit E>475 - 5.66E20 POT - E>475 is signal region for LSND type osc. - Oscillations favored over background only hypotheses at 99.4% CL (model dependent) - Best fit $(\sin^2 2\theta, \Delta m^2) = (0.9584, 0.064 \text{ eV}^2)$ $\chi^2/\text{NDF} = 16.4/12.6$ p=20.5% #### E>200MeV - 5.66E20 POT - Oscillations favored over background only hypotheses at 99.6% CL (model dependent) - No assumption made about low energy excess - Best fit ($\sin^2 2\theta$, Δm^2) = (0.0066, 4.42 eV²) $\chi^2/NDF = 20.4/15.3$ p=17.1% #### E>200MeV - Subtract excess produced by neutrinos in \overline{v} mode (11.6 events) - E<475MeV: - Large background - Not relevant for LSND type osc. - Big systematics - Null χ^2 =32.8; p=1.7% Best fit $(\sin^2 2\theta, \Delta m^2) = (0.0061, 4.42 \text{ eV}^2)$ $\chi^2/\text{NDF} = 21.6/15.3; p=13.7\%$ ## Future outlook # Future sensitivity MiniBooNE approved for a total of 1e21 POT Potential exclusion of null point assuming best fit signal • Combined analysis of v_e and \overline{v}_e ## Future experiments - Microboone - CD1 approved - Address low energy excess - Few ideas under consideration: - Move or build a MiniBooNE like detector at 200m (LOI arXiv:0910.2698) - Redoing a stopped pion source at ORNL (OscSNS http://physics.calumet.purdue.edu/~oscsns/) or Project X - A new search for anomalous neutrino oscillations at the CERN-PS (arxiv:0909.0355v3) #### **BooNE** - MiniBooNE like detector at 200m - Flux, cross section and optical model errors cancel in 200m/500m ratio analysis - Present neutrino low energy excess is 6 sigma statistical; 3 sigma when include systematics - Study L/E dependence - Gain statistics quickly, already have far detector data #### **BooNE** - Better sensitivity to $\nu_{_{\! \mu}}$ ($\overline{\nu}_{_{\! \mu}}$) disappearance - Look for CPT violation $(v_{\mu} \rightarrow v_{\mu} \neq \overline{v_{\mu}} \rightarrow \overline{v_{\mu}})$ #### OscSNS - Spallation neutron source at ORNL - 1GeV protons on Hg target (1.4MW) - Free source of neutrinos - Well understood flux of neutrinos #### OscSNS • $\bar{\nu}_{\rm e}$ appearance (left) and ν_{μ} disappearance sensitivity (right) for 1 year of running ## Summary MiniBooNE analyzed anti-neutrino data corresponding to 5.66e20POT - See 1.3σ excess of events at low (200-475MeV) energy - See excess of events at high (475-1250MeV) energy with absolute χ^2 probability p=3.0% for null signal (model independent) ## Summary Oscillations favored over background only hypotheses at 99.4% CL (E>475MeV) ### Backup ## Reminders of some analysis choices - Data bins chosen to be variable width to minimize N bins without sacrificing shape information - Technical limitation on N bins used in building syst error covariance matrices with limited statistics MC - First step in unblinding revealed a poor chi2 for oscillation fits extending below 475 MeV - Region below 475 MeV not important for LSND-like signal -> chose to cut it out and proceed # Reminders of some pre-unblinding choices - Why is the 300-475 MeV region unimportant? - Large backgrounds from mis-ids reduce S/B - Many systematics grow at lower energies - Most importantly, small S/B so not a good L/E region to look for LSND type oscillations #### E>475 MeV 1 sigma contour includes 0.003<sin²2θ<1 #### Subevent structure - $\nu_{_{\mu}}$ CCQE have 2 sub-events separated in time - Multiple hits in ~100ns window form a subevent